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Homework 5
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All questions are selected from the textbook. Submit your answers in a single PDF file

via Blackboard online to ONLY the Compulsory Part. Reference solutions to both

parts will be provided after grading.

Compulsory Part

Exercises (Chapter 2, Page 80): 14, 15, 19, 20, 21, 22, 23

Optional Part

Exercises (Chapter 2, Page 80): 11, 12, 13, 16, 17, 18



2

Compulsory Part

14. Solution. Suppose that the stationary distribution π exists. Then πP = P

and
∑∞

x=0 π(x) = 1 imply that

π(0) =
∞∑
x=0

π(x)P (x, 0) = (1− p)
∞∑
x=0

π(x) = 1− p,

π(1) = π(0)P (0, 1) = (1− p)p,

π(2) = π(1)P (1, 2) = (1− p)p2,

· · ·

By induction, π(n) = (1− p)pn, n ≥ 0.

On the other hand, check that above π satisfies both
∑∞

n=0 π(n) = 1 and π(n) =∑∞
m=0 π(m)P (m,n), n ≥ 0. Hence π = (1 − p, (1 − p)p, (1 − p)p2, · · · ) is the unique

stationary distribution.

15. Solution. Let S = {1, 2, . . . , d} be the state space. Since all states are in a finite

irreducible closed set, they are positive recurrent. Thus the stationary distribution is

unique (page 68, Corollary 7).

Let π(x) = 1
d
for all x ∈ S. Then it is a probability vector since

∑d
x=1 π(x) = 1.

Moreover, for all y ∈ S,

d∑
x=1

π(x)P (x, y) =
d∑

x=1

1

d
P (x, y) =

1

d
= π(y).

This shows π is the unique stationary distribution we want.

19. Solution. (a) For the irreducible closed set {1, 2, 3}, its transition matrix is

given by

0 1 00 0 1

1 0 0

 . This matrix is doubly stochastic. By Q15, the stationary distribu-

tion concentrated on {1, 2, 3} is given by (0, 1/3, 1/3, 1/3, 0, 0, 0).

For the irreducible closed set {4, 5, 6}, its transition matrix is given by

 1
2
0 1

2
1
2

1
2
0

0 1
2

1
2

 .

This matrix is doubly stochastic. By Q15, the stationary distribution concentrated on

{4, 5, 6} is given by (0, 0, 0, 0, 1/3, 1/3, 1/3).

(b) We use Theorem 1 in textbook, page 58. If y is recurrent and π(y) is the

stationary distribution concentrared on the corresponding irreducible closed set,

lim
n→∞

Gn(x, y)

n
=

ρxy
my

= ρxy · π(y).
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If y is transient, it is clear that limn→∞
Gn(x,y)

n
= 0. As all ρxy and π(y) are computed

before, we have

[ lim
n→∞

Gn(x, y)

n
]0≤x,y≤6 =



0 1
4

1
4

1
4

1
12

1
12

1
12

0 1
3

1
3

1
3
0 0 0

0 1
3

1
3

1
3
0 0 0

0 1
3

1
3

1
3
0 0 0

0 0 0 0 1
3

1
3

1
3

0 0 0 0 1
3

1
3

1
3

0 0 0 0 1
3

1
3

1
3


.

20. Solution. (a) For the irreducible closed set {0, 1}, its transition matrix is given

by P1 =

[
1
2

1
2

1
3

2
3

]
. Let π1 = (π1(0), π1(1)) and then solve

{
π1P1 = π1,

π1(0) + π1(1) = 1.

We get π1 = (2
5
, 3
5
). Hence the stationary distribution concentrated on {0, 1} is given

by (2
5
, 3
5
, 0, 0, 0, 0).

For the irreducible closed set {2, 4}, its transition matrix is given by P2 =

[
1
8

7
8

3
4

1
4

]
.

Let π2 = (π2(2), π2(4)) and then solve{
π2P2 = π2,

π2(2) + π2(4) = 1.

We get π2 = ( 6
13
, 7
13
). Hence the stationary distribution concentrated on {2, 4} is given

by (0, 0, 6
13
, 0, 7

13
, 0).

(b) We use Theorem 1 in textbook, page 58. If y is recurrent and π(y) is the

stationary distribution concentrared on the corresponding irreducible closed set,

lim
n→∞

Gn(x, y)

n
=

ρxy
my

= ρxy · π(y).

If y is transient, it is clear that limn→∞
Gn(x,y)

n
= 0. As all ρxy and π(y) are computed

before, we have

[ lim
n→∞

Gn(x, y)

n
]0≤x,y≤5 =



2
5

3
5

0 0 0 0
2
5

3
5

0 0 0 0

0 0 6
13

0 7
13

0
14
55

21
55

24
143

0 28
143

0

0 0 6
13

0 7
13

0
12
55

18
55

30
143

0 35
143

0


.
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21. Solution. The stationary distribution is given by Q7(a):

π = (π(0), π(1), π(2), π(3), π(4)) = (
1

16
,
1

4
,
3

8
,
1

4
,
1

16
).

The period of the chain is 2.

(a) It follows from Theorem 7 in page 73 that for n large and even(
P0(Xn = x)

)
0≤x≤4

=
(
P n(0, x)

)
0≤x≤4

≈ (2π(0), 0, 2π(2), 0, 2π(4)) = (
1

8
, 0,

3

4
, 0,

1

8
).

(a) It follows from Theorem 7 in page 73 that for n large and odd(
P0(Xn = x)

)
0≤x≤4

=
(
P n(0, x)

)
0≤x≤4

≈ (0, 2π(1), 0, 2π(3), 0, ) = (0,
1

2
, 0,

1

2
, 0).

22. Solution. (a) Denote i → j if P (i, j) > 0, where P is the transition probability.

Note that in this matrix

0 → 2 → 1 → 0,

the chain is irreducible.

(b) Note that

P 2 =

 1
2

1
2
0

0 0 1
1
2
0 1

2

 ; P 3 =

 1
2
0 1

2
1
2

1
2
0

1
4

1
4

1
2

 ,

thus P 2(0, 0) > 0 and P 3(0, 0) > 0, the period of 0 is given by d0 = g.c.d.{n : P n(0, 0) >

0} = 1.

(c) Let π be the stationary distribution. Then π(0) + π(1) + π(2) = 1. Solve the

equation πP = π. We have π = (2
5
, 1
5
, 2
5
).

23. Solution. (a) Since

0 → 1 → 3 → 0 → 2 → 4 → 0,

the chain is irreducible.

(b) Since P (0, 0) = 0, P 2(0, 0) = 0, P 3(0, 0) ≥ P (0, 1)P (1, 3)P (3, 0) > 0, together

with P 4 = P , the period of the chain is 3.

(c) Let π be the stationary distribution. Then π(0)+π(1)+π(2)+π(3)+π(4) = 1.

Solve the equation πP = π. We have π = (1
2
, 1
9
, 2
9
, 1
12
, 1
4
).
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Optional Part

11. Proof. We use induction on n. For n = 0, X0 has a Poisson distribution

with parameter t = tp0 + λ
q
(1− p0). Suppose that Xn has a Poisson distribution with

parameter tpn + λ
q
(1 − pn) for some n ≥ 0. Then applying the result in page 54 of

the textbook, R(Xn) has a Poisson distribution with parameter p(tpn + λ
q
(1 − pn)) =

tpn+1 + λ
q
(1− pn+1)− λ. Set µn = tpn+1 + λ

q
(1− pn+1)− λ. Then for x ≥ 0,

P (Xn+1 = x) = P (ξn+1 +R(Xn))

=
x∑

y=0

P (R(Xn) = y, ξn+1 = x− y)

=
x∑

y=0

P (R(Xn) = y)P (ξn+1 = x− y)

=
x∑

y=0

µy
ne

−y

y!

λx−ye−(x−y)

(x− y)!

=
e−x

x!

x∑
y=0

(
x

y

)
µy
nλ

x−y

=
(µn + λ)xe−x

x!

which shows that Xn+1 has the Poisson distribution with parameter µn + λ = tpn+1 +
λ
q
(1− pn+1). By induction, Xn has the indicated Poisson distribution.

12. Proof. We use induction on n. For n = 0, Ex(X0) = x = xp0 + λ
q
(1 − p0).

Suppose that Ex(Xn) = xpn+ λ
q
(1−pn) for some n ≥ 0. Note that ξn+1 has the Poisson

distribution with parameter λ. We have

Ex(ξn+1) =
∞∑
x=0

x
λxe−λ

x!
= λ

∞∑
x=1

λx−1e−λ

(x− 1)!
= λ.

By the Total Expectation Formula and Markov property,

Ex(R(Xn)) =
∞∑
y=0

E(R(Xn) | Xn = y)Px(Xn = y)

=
∞∑
y=0

py · Px(Xn = y)

= pEx(Xn) = xpn+1 +
λ

q
(p− pn+1).

Hence

Ex(Xn+1) = Ex(ξn+1 +R(Xn)) = Ex(ξn+1) + Ex(R(Xn)) = xpn+1 +
λ

q
(1− pn+1).
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13. Solution. Since X0 has the stationary distribution π, Xn has the same distri-

bution π for any n ≥ 0. For m ≥ 0 and n ≥ 0, by the Total Expectation Formula, the

result of Q12 and (16),

E(XmXm+n) =
∞∑
x=0

E(XmXm+n | Xm = x)P (Xm = x)

=
∞∑
x=0

xE(Xm+n | Xm = x)P (Xm = x) =
∞∑
x=0

xEx(Xn)π(x)

=
∞∑
x=1

(λ/q)xe−λ/q

(x− 1)!

(
xpn +

λ

q
(1− pn)

)

=
λ

q

∞∑
x=1

(λ/q)x−1e−λ/q

(x− 1)!

(
(x− 1)pn + pn +

λ

q
(1− pn)

)

=
λ

q

(
pn +

λ

q
(1− pn)

)
+

(
λ

q

)2

pn

=
λ

q

(
pn +

λ

q

)
.

Hence

cov(Xm, Xm+n) = E(XmXm+n)− E(Xm)E(Xm+n)

=
λ

q

(
pn +

λ

q

)
− (E(X0))

2

=
λ

q

(
pn +

λ

q

)
−

(
∞∑
x=0

x
(λ/q)xe−λ/q

x!

)2

=
λ

q

(
pn +

λ

q

)
−
(
λ

q

)2

=
λpn

q
.

16. Proof. For any x ∈ S,∑
y∈S

Q(x, y) = 1− px +
∑

y∈S:y ̸=x

pxP (x, y) = 1− px + px
∑

y∈S:y ̸=x

P (x, y) = 1− px + px = 1.

Hence Q is the transition function of a Markov chain.

For x, y ∈ S, since x leads to y in the Markov chain with respect to the transition

function P , there exists a positive integer n, and x1, x2, · · ·xn−1 ∈ S such that

P (x, x1)P (x1, x2) · · ·P (xn−1, y) > 0.

This implies

Q(x, x1)Q(x1, x2) · · ·Q(xn−1, y) = pxpx1 · · · pxn−1P (x, x1)P (x1, x2) · · ·P (xn−1, y) > 0.

Thus x leads to y in the Markov chain with respect to the transition function Q.

Therefore the new chain is irreducible.

Since the state space S is finite, all states are positive recurrent, hence the new chain

has a unique stationary distribution (page 68, Corollary 7).
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Let π′(x) = p−1
x π(x)∑

y∈S p−1
y π(y)

, x ∈ S. Then clearly π′(x) ≥ 0,∑
x∈S

π′(x) =

∑
x∈S p

−1
x π(x)∑

y∈S p
−1
y π(y)

= 1,

and for any z ∈ S,

(π′Q)(z) =
∑
x∈S

π′(x)Q(x, z)

=

∑
x∈S:x ̸=z p

−1
x π(x)pxP (x, z) + p−1

z π(z)(1− pz)∑
y∈S p

−1
y π(y)

=

∑
x∈S:x ̸=z π(x)P (x, z)− π(z) + p−1

z π(z)∑
y∈S p

−1
y π(y)

=
(πP )(z)− π(z) + p−1

z π(z)∑
y∈S p

−1
y π(y)

=
p−1
z π(z)∑

y∈S p
−1
y π(y)

= π′(z).

Hence π′ is the stationary distribution of the Markov chain with respect to the transi-

tion function Q.
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17. Solution. Note that this chain is irreducible and positive recurrent and the

stationary distribution is given by Q7(a):

π(n) =

(
d
n

)
2d

, 0 ≤ n ≤ d.

Hence the mean return time to state 0 is

m0 =
1

π(0)
= 2d

by Theorem 5 in page 64.

18. Solution. (a) Let A = {1, 2, . . . , c} and B = {c+ 1, c+ 2, . . . , c+ d}.
For x, y ∈ A, ρxy ≥ P (x, c+ 1)P (c+ 1, y) = (1/d)(1/c) > 0.

For x, y ∈ B, ρxy ≥ P (x, 1)P (1, y) = (1/c)(1/d) > 0.

For x ∈ A, y ∈ B, ρxy ≥ P (x, y) = 1/d > 0 and ρyx ≥ P (y, x) > 0.

Hence the chain is irreducible.

(b) Since the chain is irreducible and finite, it has a unique stationary distribution

π.

For y ∈ A, we have

π(y) = (πP )(y) =
∑
x∈B

π(x)P (x, y) =
1

c

∑
x∈B

π(x),

which implies ∑
y∈A

π(y) =
∑
y∈A

1

c

∑
x∈B

π(x) =
∑
x∈B

π(x).

Note that
∑

x∈A∪B π(x) = 1. Hence
∑

y∈A π(y) =
∑

x∈B π(x) = 1/2. Thus for any

y ∈ A, π(y) = 1
2c
.

For z ∈ B, we have

π(z) = (πP )(z) =
∑
x∈A

π(x)P (x, z) =
1

d

∑
x∈A

π(x) =
1

2d
.

Therefore, the stationary distribution is

π(x) =

{
1
2c
, x ∈ A,

1
2d
, x ∈ B.


